PHOTOJOURNALISM
TELLING STORIES WITH IMAGES
PHOTOJOURNALISM: TELLING STORIES WITH IMAGES

STUDENT WORKBOOK
Every day people are bombarded with thousands of visual images. The media of this century and beyond will continue the visually oriented and graphic trend that exploded in the latter part of the last century. One of the key components to the success of these visual print publications is photography.

Since the days of the Civil War, photos have served a critical role in the development of our society. The images for a yearbook are no less powerful in creating a historical record — from a student perspective.

Photojournalism introduces students to the world of photography and journalism. In this unit you will learn about the camera and how to use it to tell a story, including:

- **Basics of the Camera and How It Captures Images**
- **Settings on the Camera and How to Use Them**
- **How to Get the Most When Faced with Different Lighting Situations**
- **Composition of Photos**
- **Teamwork in Telling the Best Story with Photos**

Whether it’s with a mobile phone or a top-of-the-line digital camera, the basic rules and concepts are the same. Whether it’s for publication on social media that lasts for a few seconds or a yearbook that lasts a lifetime, photographs document reality. If you can capture high-quality action photos that are full of emotion for your yearbook, you will be capturing the definitive historical record of the year.
The camera is not a new device. Early pinhole cameras date to the ancient Chinese and Greeks. They knew you could project an image through a small hole onto a screen. However, it wasn’t until the concept of the camera combined with the photographic process invented in the early 1800s that pictures became standard fare.

With film cameras, light passes through the lens onto film. Today’s digital cameras use the same concept, but the light goes through a lens onto an image sensor, much like the iris of the eye. Sensors capture light and convert it into an electrical signal, which it converts into data. The data, or images, are stored until downloaded.
Three things must come together to get the light onto the film or sensor so it produces a great photo – the shutter speed, ISO and aperture. Think of them as three sides of a triangle. If you shorten one side of a triangle, it affects the other two. So if you adjust the one of the three items, say, aperture, it will affect the shutter speed and ISO.

A wider or larger aperture, identified by a smaller f/stop number, allows more light to be transmitted onto the sensor and, therefore, you can use a faster shutter speed. Larger apertures provide a much shallower depth of field than smaller apertures, other conditions being equal.

When photographing under low light or when photographing fast action, a wide maximum aperture (e.g., f/2.8, f/2.0, f/1.4) is necessary.

VOCABULARY

APERTURE Adjustable opening in the lens that controls the amount of light reaching the digital sensor or film

DEPTH OF FIELD The distance between the nearest and farthest objects in the image that appear in focus; three factors influence depth of field: the aperture setting on the lens, the focal length of the lens and the distance between the camera and the object being photographed

DSLR Digital Single-Lens Reflex, a type of camera

EXPOSURE The sum of aperture, shutter speed and film sensitivity (ISO)

ISO The setting on the camera that determines the sensitivity of the sensor to light (or ratings that represent how fast the film can record an image) stands for International Standards Organization; also ASA, or American Standards Association

FOCAL LENGTH Focal length of the lens determines the angle of view. Short focal lengths give a wider field of view than longer focal length lenses.

NORMAL LENS Lenses that approximate the human eye's angle of view

SHUTTER A shield that blocks light from reaching the sensor until the photographer presses the shutter release, exposing the image

TELEPHOTO LENS Lenses with focal lengths of more than 50mm and therefore have a narrower angle of view; e.g., 85mm, 200mm, 400mm

WIDE-ANGLE LENS Lenses with focal lengths of less than 50mm and therefore have a wider angle of view; e.g., 35mm, 28mm

ZOOM LENS Lenses with variable focal lengths; e.g., 16-35mm, 24-70mm, 70-210mm
There are many parts of the camera you should not touch, such as the shutter and the lens, as your fingers can leave oil and dirt. The camera’s parts should always remain clean.

Using your own digital camera, or a school camera, identify these parts.

SHUTTER – The part of the camera that controls the length of time the sensor is exposed to light

SHUTTER RELEASE – The button a photographer presses to expose the sensor to light

VIEWFINDER – The part of the camera through which photographers look to compose an image

BULB – "B"; when set on this shutter speed, the shutter will remain open as long as the photographer depresses the button

LENS-RELEASE BUTTON – A button generally located on the front of the camera that the photographer presses to remove a lens on a single-lens reflex camera

HOT SHOE – A mount on top of the camera that holds an external flash

MODE DIAL – A dial on most cameras allowing the photographer to switch between modes such as P (program), A (aperture priority), S (shutter priority) or M (manual)

MONITOR / SCREEN – A screen on the back of the camera allowing the photographer to preview the image, playback images or change settings

WHITE BALANCE – A camera setting that adjusts for varying types of light allowing white objects to appear white in the image
Be sure you know how to:

- Turn the camera on and off
- Turn the on-camera flash on and off
- Insert, remove and format the storage card
- Insert and remove the battery
- Change the operational mode, such as P (program), A (aperture priority), S (shutter priority) or M (manual)
- Change the shutter speed regardless of camera mode
- Change the aperture regardless of camera mode
- Change the ISO
- Set the white balance
- Set the resolution of the images being taken (large, medium, small, raw)
- Take a picture
- View and delete an image
- Mount and remove the lens on the camera
- Determine whether the lens is a fixed focal length lens or a zoom lens
- Determine the focal length of the lens
- Focus the lens

I can do all tasks in 3.0 and I can teach others!

I can demonstrate an understanding of how a camera works to produce images. I can...

a. locate the main functions of the camera
b. operate the main functions of the camera

I can determine the meanings of words and phrases associated with photography and operating a DSLR camera.

I can locate and manipulate some of the basic functions of the camera, but still struggle to understand what each function does and when to use them.

I don’t understand the basic parts of a camera or how to use it.
Lesson 2
An Exposure Map

Objectives – In this lesson you will learn:

About adjusting camera settings to compensate for lighting conditions in a variety of places

Suggested camera settings to get good photos in different types of light

“You’ve got to push yourself harder. You’ve got to start looking for pictures nobody else could take.”

– William Albert Allard, photographer, 1937-
Every school has different lighting conditions. Some classrooms have windows, some don’t. Some teams practice under one set of lights but play games under another set of lights. As with all lighting situations, the perfect exposure depends on the quantity, quality and direction of light on the subject being photographed.

Take a traditional classroom, for example, one with a bank of windows on the far wall and fluorescent lights in the ceiling. If shooting from the door of the classroom toward the windows, you must compensate for the backlighting caused by the windows. Otherwise, the image will have flat lighting and silhouettes or blown out highlights in the background. However, if you move to the front or back of the classroom, the sidelighting generated by the windows can add texture and depth.

But then, what white balance do you use: fluorescent or daylight? A 400 ISO will be suitable for most classroom situations, giving an average exposure of about 1/125 at f/4. But what if your teacher is leading an activity that requires a faster shutter speed? As a photographer, you have to know how to plan ahead and compensate for these varying conditions.

HERE ARE SOME SAMPLE EXPOSURES THAT MIGHT SERVE AS GUIDES. HOWEVER, AN EXPOSURE CAN VARY DEPENDING ON THE CIRCUMSTANCES.

<table>
<thead>
<tr>
<th>SITUATION</th>
<th>SHUTTER SPEED</th>
<th>F/STOP</th>
<th>ISO</th>
<th>LENS</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLASSROOM INTERIOR</td>
<td>1/125</td>
<td>f/4</td>
<td>400</td>
<td>28-70mm</td>
</tr>
<tr>
<td>DRAMA PRODUCTION</td>
<td>1/125</td>
<td>f/4</td>
<td>400</td>
<td>70-200mm</td>
</tr>
<tr>
<td>CLASSROOM BY WINDOWS</td>
<td>1/250</td>
<td>f/5.6</td>
<td>400</td>
<td>28-70mm</td>
</tr>
<tr>
<td>SPOTLIGHT PERSON ON STAGE</td>
<td>1/250</td>
<td>f/5.6</td>
<td>400</td>
<td>70-200mm</td>
</tr>
<tr>
<td>WRESTLING</td>
<td>1/250</td>
<td>f/4</td>
<td>1000</td>
<td>70-200mm</td>
</tr>
<tr>
<td>BASKETBALL</td>
<td>1/500</td>
<td>f/2.8</td>
<td>1000</td>
<td>70-200mm</td>
</tr>
<tr>
<td>NIGHT ACTION</td>
<td>1/500</td>
<td>f/2.8</td>
<td>1600</td>
<td>300mm</td>
</tr>
<tr>
<td>NIGHT SOFTBALL</td>
<td>1/500</td>
<td>f/4</td>
<td>1000</td>
<td>300mm</td>
</tr>
<tr>
<td>PEP RALLY</td>
<td>1/500</td>
<td>f/2.8</td>
<td>1000</td>
<td>28-70mm</td>
</tr>
<tr>
<td>DAY BASEBALL GAME</td>
<td>1/1000</td>
<td>f/16</td>
<td>200</td>
<td>300mm</td>
</tr>
</tbody>
</table>
Create a map to determine the best settings for lighting situations in your school. Your teacher will put you in a group of 2-5 students and assign you to a classroom or an area of the campus.

Draw a rough map of the room, area or hallway that you were assigned, indicating all major light sources. On that map, move around with your camera, pointing the camera in different directions, recording the exposure in each direction. Also note which lens you were using. For consistency, you and your classmates should use the same lens and same ISO. See the sample map for the types of information to record.
Digital SLR cameras have built-in light meters. This camera, for example, indicates that the exposure is 1/500 at f/5.6 using 400 ISO.

Make the following setting changes.
1. Set your ISO to 200, then change it to 400. Point your camera at a classmate and take a picture, making note of the shutter speed and aperture with the camera set on Program (P) so the camera sets both the shutter speed and the aperture.
2. Set your camera shutter speed to 1/500. Note whether this was faster or slower than the initial shutter speed your camera set. Leave the aperture alone. Depending on your camera, this may mean going to shutter priority mode or manual. Is the image darker, lighter or the same as the previous exposure? Why?
3. Now, set your shutter speed back to what your camera had set initially. But set the aperture at f/16. Note whether this was more wide open or more closed than the initial exposure. Depending on your camera, this may mean going to aperture priority mode or manual. Is the image darker, lighter or the same as the previous exposure? Why?
4. Now set your camera to Manual mode with the exposure at 1/500 @ f/16 at ISO400. The picture will probably be too dark — underexposed — as indicated on the display, which, in this case, shows at least two stops underexposure.

5. Record three accurate and equivalent exposures for the image of your classmate.
Visit flickr.com and scroll down to view some of the day’s images or search for a topic that interests you. Click on one image. Click on Additional info on the right side. Record the exposure information for this image, including the shutter speed, aperture and ISO. Do this for a total of five images. Discuss your findings with the class.

Example:

Image 1:

Image 2:

Image 3:

Image 4:

Image 5:

I can do all tasks in 3.0 and I can teach others!

I can demonstrate an understanding of various lighting conditions, how they affect the quality of pictures, and how to adjust my camera settings accordingly. I can...

- follow a complex set of tasks to adjust ISO, shutter speed, and aperture to create images that utilize lighting in an effective manner
- understand how ISO, shutter speed, and aperture affect the exposure of a photograph
- demonstrate an understanding of the different exposures and settings required for various lighting conditions

I can conduct small research projects to locate different lighting conditions and can adjust my camera settings to achieve the correct exposure.

I have a basic understanding of how light affects photographs, but I don’t understand how to adjust the settings on my camera to adapt to different lighting conditions.

I don’t understand how light affects photographs.
Lesson 3
F/stops and Depth of Field

Objectives – In this lesson you will learn:

What an f/stop is
About depth of field and obtaining the proper focus
The necessity of getting close to your subject

“Photography is a strong tool, a propaganda device, and a weapon for the defense of the environment... and therefore for the fostering of a healthy human race and even very likely for its survival.”
– Eliot Porter, nature photographer, 1901-1990

The f/stop is a measure of the diameter of the aperture in a lens and, hence, a measure of how much light is being passed through the lens to the sensor.

Beginning with the widest possible aperture, f/1, modern lenses use a scale that approximates multiples of the square root of 2: f/1.4, f/2.0, f/2.8, f/4, f/5.6, f/8, f/11, f/16, f/22, f/32.

Each f/stop lets in twice the light of the next higher f/stop or half as much as the next lower f/stop. For example, f/4 lets in half as much light as f/2.8 and twice as much as f/5.6. In short, opening up a lens by one stop allows twice as much light to reach the sensor at a given shutter speed and ISO.
The aperture controls the amount of the image that is in focus. That is, when you focus on a specific part of an image, the area in front of and behind that focus point made sharp is the depth of field. Smaller apertures (higher-numbered f/stops such as f/16 or f/22) have higher depth of field, making more of the image sharp.

Lower apertures (lower-numbered f/stops such as f/2 or f/2.8) have lower depth of field, making less of the image sharp. About one-third of the depth of field is in front of the focus point and about two-thirds behind it.

In addition to the aperture, two other factors influence depth of field: the focal length of the lens and the closeness to the subject. Longer lenses, such as 200mm or 300mm, have lower depth of field than shorter lenses.

The closer the camera is to the subject, the lower the depth of field. Extreme close-up photography may result in almost no depth of field, making focus critical since almost nothing in front of or behind that focus point will be sharp.
1. Set a row of objects on a table in a room with plenty of light. With a normal lens on your camera, focus on one of the objects that is about one-third of the way down the row. Set your camera on aperture priority and take a series of photos with the camera set at the maximum aperture possible given the lighting conditions. If you can’t get a small enough aperture, increase the ISO. Compare the images, noticing the effects of depth of field. Print two of the images and write the f/stop, shutter speed, ISO and focal length of the lens on the printout. Compare your results with others in the class.

2. With a friend and a variety of lenses, go outside. Start with a normal lens and take a picture of your friend with the widest open aperture possible. Make note of the exposure. Keeping the same exposure, change the lenses. Compare the results, noting the effects of depth of field. Print two of the images and write the f/stop, shutter speed, ISO and focal length of the lens on the printout. Compare your results with others in the class.

3. Search through today’s newspaper, a magazine published this week or a recently updated website. Find two photos, one illustrating low depth of field (blurry background) and one illustrating high depth of field.

4. Photograph an abstract object that suggests a letter of the alphabet. Concentrate on the light and proper use of depth of field.
I can do all tasks in 3.0 and I can teach others!

I can demonstrate an understanding of the relationship between f/stop and aperture and how this controls the amount of the image that is in focus. I can...

a. create equations that let me understand how much light is let in at each f/stop setting and how this affects the focus of the image

b. demonstrate an understanding of the relationship between square roots and the f/stop number

I can demonstrate a command of the conventions and mechanics of standard English and can apply this understanding to writing concise and complete story-telling captions.

2.0 □ I understand what aperture and f/stops are but still don’t understand how to adjust them to create depth of field in my images.

1.0 □ I don’t understand what an f/stop is or how it can affect the quality of my pictures.
Lesson 4
Shutter Speeds and Stopping Action

Objectives – In this lesson you will learn:

- How shutter speeds are measured
- Which shutter speeds to use to catch various actions

“My first priority when taking pictures is to achieve clarity. A good documentary photograph transmits the information of the situation with the utmost fidelity; achieving it means understanding the nuances of lighting and composition, and also remembering to keep the lenses clean and the cameras steady.”

– Sam Abell, photographer, 1945

The amount of time that the shutter remains open, allowing light through the lens to reach the sensor, is the shutter speed. Shutter speed is expressed in fractions of a second. Early images required light to pass through the lens for minutes, but modern cameras have fast shutter speeds, generally 1/4000th of a second at the fastest.

However, just because a camera has a setting of 1/4000th of a second doesn’t mean you can use it on a regular basis. Such a shutter speed would require a lot of light for proper exposure of the image.

Regular shutter speeds (expressed in fractions of a second)
1 • 1/2 • 1/4 • 1/8 • 1/15 • 1/30 • 1/60 • 1/125 • 1/250 • 1/500 • 1/1000 • 1/2000 • 1/4000
Each shutter speed is half the next slower shutter speed, letting in half as much light, and twice the next faster shutter speed, letting in twice as much light. For example, a shutter speed of 1/250 lets in half as much light as 1/125 and twice as much as 1/500.

In general, the slowest shutter speed a person can use is about 1/60th of a second. However a better guideline is to avoid using shutter speeds slower than the inverse of the focal length of the lens when hand-holding the camera.

What does that mean? For example, with a 200mm lens, to avoid blur, the slowest appropriate shutter speed would be 1/200th of a second (1/250th of a second being the closest regular shutter speed).

Stopping the motion of fast-moving objects requires a faster shutter speed. For example, 1/60th of a second might stop the action of a person sitting at a desk working.

The faster the person in the picture is moving, the faster the shutter speed needs to be. With a normal lens, 1/250th of a second will stop a person running at a brisk pace but it takes a shutter speed of 1/2000th of a second to stop the blades of a helicopter.
ACTIVITY

PRACTICE WITH
SHUTTER SPEED

1. With a friend, go out to your school’s track or some place where you can run at least 50 yards. Even a long hallway will work. Check to make sure you can get a basic exposure with at least 1/500th of a second. If not, increase the ISO until you can. Then with your friend running parallel to the back of the camera (side to side), take a series of photos at a variety of shutter speeds from 1/15th of a second to as fast as you can get a properly exposed image. Compare the images noticing the effects of different shutter speeds. Print two of the images and write the f/stop, shutter speed, ISO and focal length of the lens on the printout. Compare your results with others in the class.

2. Search through today’s newspaper, a magazine published this week or a recently updated website. Find two photos, one illustrating use of a fast shutter speed and one illustrating use of a slow shutter speed.

3. In a small group of photographers, go out into your city at night. Your assignment is to document “light.” Try using long shutter speeds. Consider jiggling the camera during the exposure. Try long exposures such as 1 second or even longer. Share your results.

NOTES!
Lesson 4

RATE YOUR PROGRESS

4.0 □ I can do all tasks in 3.0 and I can teach others!

3.0 □ I can demonstrate an understanding of the relationship between shutter speed and the focal length of the lens. I can...

 a. adjust shutter speed settings on my camera
 b. adjust the shutter speed to stop motion and capture various types of action
 c. demonstrate an understanding of how the speed of the object being photographed affects the shutter speed setting

 I can demonstrate an understanding of the relationship between shutter speeds and light and how this affects the quality and clarity of the image produced.

2.0 □ I understand how shutter speeds are measured but still don’t understand which shutter speeds are best for capturing various types of actions.

1.0 □ I don’t understand shutter speed or how it affects the quality of my images.
"Our job is to record, each in his own way, this world of light and shadow and time that will never come again exactly as it is today."

– Edward Abbey, author, 1927-1989

Well, it’s actually the International Organization for Standardization, but the acronym is ISO because most people call it the International Standards Organization. It’s the organization that develops voluntary international standards. Since 1947, the organization has set nearly 20,000 standards in everything from food safety to technology to healthcare — to even photography. In terms of photography, the ISO is a measure of the sensor’s sensitivity to light — historically called the “film speed.”

The lower the ISO number, the less sensitive the sensor is to light. In low-light situations, photographers use higher ISO settings to get faster shutter speeds. However, there is a trade-off. Higher ISOs result in noisier (grainier), lower-quality images. Sometimes, therefore, you have to make trade-offs. For general shooting, 400 ISO is a good compromise, giving you some flexibility with faster shutter speeds while resulting in usable images.
ISO GUIDELINES

BRIGHT SUNLIGHT

• Bright sunlight, no action: 100 ISO
• Bright sunlight, slow action: 200 ISO
• Bright sunlight, fast action: 400 ISO

AVERAGE LIGHT

• Average light, slow action: 400 ISO

LOW LIGHT

• Low light, slow action: 800 ISO
• Low light, fast action: 1600 ISO or faster
ACTIVITY

ADJUSTING THE ISO

Find or create a well-lit scene of people working. With a normal lens, set your camera on Program mode to allow the camera to set an appropriate shutter speed and aperture. Then take the same photo at five different ISOs. Compare the images noticing the effects of different ISOs. Print two of the images and write the f/stop, shutter speed, ISO and focal length of the lens on the printout. Compare your results with others in the class.

Depending on the quality of the printer, you may be able to see the results better on the computer monitor at extreme magnification.

Photo by Kale Williams
I can do all tasks in 3.0 and I can teach others!

I can demonstrate an understanding of what ISO is, what it stands for, and how to adjust it for various activities and lighting conditions. I can...

a. demonstrate an understanding of the relationship between light and action and how this affects the ISO setting

b. adjust the ISO for a variety of conditions

I understand what ISO is and what it stands for, but I still don’t understand how various ISO settings can affect the quality of a picture.

I don’t understand what ISO is or what it stands for.
“Light glorifies everything. It transforms and ennobles the most commonplace and ordinary subjects. The object is nothing; light is everything.”
– Leonard Misonne, photography, 1870-1943

The word photography is derived from the Greek words photos (light) and graphos (drawing). It literally means drawing with light. So learning how to deal with the quantity, quality and direction of light is critical to being a successful photographer.

Quantity refers to the amount of light. A properly exposed image has adequate details in the dark areas (the shadows) and the light areas (the highlights). If not enough light reaches the sensor, the image will appear too dark and will be underexposed. If too much light reaches the sensor, the image will appear too light and will be overexposed.

Quality refers to both the harshness of the light and the color of the light. Harsh light, like that found on a sunny day, creates very bright and very dark areas in the same scene with distinct shadows. Soft light, like the light found on a cloudy day, is diffuse and even with no harsh shadows. And depending on the source of the light, it can take on different hues even though the human brain compensates and makes most light appear white.
Pictures taken with the camera set on daylight white balance, but taken under fluorescent light, will appear green. Pictures taken under tungsten light appear reddish-orange. That’s why it’s so important to set the white balance to the appropriate light source. In many situations, Auto White Balance (AWB) is better than leaving the camera set for daylight exposure. But even daylight has color to it. Some of the best light of the day, a warm, golden light, happens an hour after sunrise and an hour before sunset.

VOCABULARY

DAYLIGHT Light that comes from the sun or that is color-balanced to be the same color as sunlight (5400-5600K)

FLUORESCENT A type of light with a blue-green cast created when an electric current flows through mercury vapor inside a glass tube coated with a substance that glows when hit by the ultraviolet light produced when the mercury atoms are hit by electrons (4100K for cool white; 2700K for soft white)

HARSH LIGHT Light with distinct edges between the shadows and the highlights; created when light travels from direct sunlight or an nondiffused light source

OVEREXPOSURE An exposure when more than the required amount of light hits the sensor, resulting in an image that is too light

SOFT LIGHT Often called diffused light; created when light is diffused (such as through clouds or a lamp shade) or scattered (such as when bounced off an object or a wall) before hitting the subject

TUNGSTEN A metal found in common light bulbs that when burned gives off an orange light (2700K); also called incandescent lights

UNDEREXPOSURE An exposure when less of the required amount of light hits the sensor, resulting in a dark image
1. You and one of your classmates find a place with plenty of light to take photos of each other. Make note of the initial exposure of the scene with the camera set on 400 ISO and on Program. Take a picture of the scene using the recommended exposure. Then switch the camera to Manual mode and take two more images, one underexposing the image by two stops and one overexposing the image by two stops. Print all three images and write the f/stop, shutter speed and ISO on the printout. Compare your results with others in the class.

2. You and one of your classmates find a scene in the school lit by daylight, another scene lit with fluorescent lights and a third scene lit with tungsten lights. Take a picture of the scene with the camera set for a daylight exposure ((''). Print all three images on a color printer (or compare them on a computer monitor). Discuss the results with your classmates.
I can do all tasks in 3.0 and I can teach others!

I can demonstrate an understanding of various lighting conditions, how they affect the quality of pictures, and how to adjust my camera settings accordingly. I can...

a. demonstrate an understanding of how the quantity of light can affect images
b. demonstrate an understanding of how the quality of light can affect images
c. adjust the settings on my camera to compensate for both the quantity and quality of light

I understand what white balance is, how to adjust the white balance settings on my camera, and how the different settings can be used to create quality images in various lighting conditions.

I have a basic understanding of how light affects photographs, but I don’t understand the different effects of various lighting conditions or how to adjust the white balance settings on my camera to adapt to each situation.

I don’t understand how light affects photographs or how to use the white balance setting on my camera.
Lesson 7
Lighting: Direction

Objectives – In this lesson you will learn:
How the direction of the light will affect your image
That sometimes either you need to move, or the light needs to move, to get the image you want

“Light makes photography. Embrace light. Admire it. Love it. But above all, know light. Know it for all you are worth, and you will know the key to photography.”
– George Eastman, Innovator, 1854-1932

The direction of the light impacts the image. Light hitting the subject straight on, such as the light from an on-camera flash, often results in a flat, static image with little depth. This is called frontlighting.

Light from behind the subject coming into the camera results in a backlit subject, a silhouette and little detail in the subject. Light from the side gives texture and depth to the image.

VOCABULARY

BACKLIGHTING Lighting from behind the subject that illuminates the back of the subject leaving a silhouette
FRONTLIGHTING Lighting from behind the photographer that illuminates the front of the subject
SIDELIGHTING Lighting from beside the photographer and the subject that results in depth and texture in the image

Photo by Nikole Kost
With a partner, use a lamp or window as a light source. Take a photo of your partner in the same basic scene illustrating the concepts of frontlighting, backlighting and sidelighting. Print all three images and write the f/stop, shutter speed, ISO and direction of light on the printout. Compare your results with others in the class.

VOCABULARY

I can do all tasks in 3.0 and I can teach others!

I can demonstrate an ability to use the direction of light to create a quality image. I can...

a. Identify different types of lighting directions
b. Move to adjust lighting direction to enhance my photograph

I understand the benefits and advantages of backlighting, frontlighting and sidelighting.

2.0 □ I understand that the direction of light can affect the quality of my image, but I don’t understand what the different types of lighting are or how to move to light my picture in an effective manner.

1.0 □ I don’t understand how the direction of light can affect the quality of my image.
Lesson 8
Rule of Thirds

Objective – In this lesson you will learn:
How to use the rule of thirds when looking through the viewfinder to frame your images

“People think that all cameramen do is point the camera at things, but it’s a heck of a lot more complicated than that!”
– Larry in “Groundhog Day”

A basic tenet of composition is the rule of thirds, which is: “Divide the frame into thirds both horizontally and vertically. The subject goes at the intersection of any two lines.” It’s like placing a tic-tac-toe drawing on top of an image. The goal is simple: to keep the subject out of the center of the frame. This generates tension, energy and interest in the image.

Most pictures follow the rule of thirds. In a mug shot, the eyes appear at the top third of the photo. In a landscape/seascape, the horizon appears on either the top third or the bottom third, not in the middle.

Not all photos rely on the rule of thirds, which is only a guideline. Some photographers rely on bi-lateral symmetry where the subject appears at either the top or the bottom of the frame but is symmetrical on the left and right. Still, other (and fewer) images have the subject in the center of the frame.
1. Find five photographs in any print or online publication (or painting or even screen captures from a video). Sketch the rule of thirds (tic-tac-toe) diagram on top of each photo. State whether each follows the rule of thirds or not. Discuss with your classmates.

PHOTO 1:

PHOTO 2:

PHOTO 3:

PHOTO 4:

PHOTO 5:

2. Look through your camera’s viewfinder at a scene. Practice changing the focusing zone on your camera so that the camera focuses on different areas of the image.

Lesson 8
RATE YOUR PROGRESS

4.0 □ I can do all tasks in 3.0 and I can teach others!

3.0 □ I can demonstrate an ability to take photographs that reflect my understanding of the rule of thirds. I can...

 a. identify the use of the rule of thirds in photographs

 b. move and adjust objects in my image to comply with the rule of thirds

 I understand the benefits and advantages of both the rule of thirds as well as other guidelines like bi-lateral symmetry.

2.0 □ I understand the rule of thirds, but I don’t understand why it is important or how to achieve it when taking photographs.

1.0 □ I don’t understand the rule of thirds.
Lesson 9
Other Composition Guidelines

Objectives – In this lesson you will learn:
Additional rules of composition that make interesting photos
Not to be afraid to get in close or move to another spot to get the image you want

“If your pictures aren’t good enough, you’re not close enough.”
– Robert Capa, war photographer, 1913-1954

In basic terms, composition describes how the elements are arranged in an image. In addition to following the rule of thirds, photography instructors often give advice to improve the composition of a photograph such as:

• Move up close and fill the frame
• Try different angles (get up high or down low)
• Watch the background to avoid distracting objects

In addition to the advice, there are at least four concrete composition techniques that can serve you well.

1. **Framing** — A composition technique in which the center of visual interest in a photo is framed by objects in the foreground that are usually out of focus; lends depth

2. **Repetition of shapes** — A technique that uses repetition of elements, or a break in the repetition, to grab the viewer’s attention.

3. **S curves** — A technique that uses elements in a photo shaped in curves to grab the viewer’s attention

4. **Leading lines** — A technique that uses the lines in one part of a photograph to lead the viewer into another part of the image
1. Find one published photo illustrating each of the following composition techniques: framing, repetition of shapes, S curves and leading lines. Print each of the photos and label it with the composition techniques it illustrates and share with your classmates.

2. After getting permission from another teacher at your school, go with a classmate to take some academic shots of students working in that class. After taking some eye-level shots, try getting down on your knees, laying on the ground or carefully standing on a chair to find a new viewpoint. Share your two favorites. Write the f/stop, shutter speed, ISO and direction of light on the print out. Discuss with your classmates.
PHOTO EVALUATION

Photographer’s name: ...

Date due: ..

Section of yearbook: ..

Page number(s): ..

Subject of story: ..

<table>
<thead>
<tr>
<th>Self Evaluation Date: 5 4 3 2 1</th>
<th>Section/Copy Editor Review Date: 5 4 3 2 1</th>
<th>Due Date for Edits: 5 4 3 2 1</th>
<th>EIC Review Date: 5 4 3 2 1</th>
<th>Due Date for Edits: 5 4 3 2 1</th>
<th>Adviser Review Date: 5 4 3 2 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo tells a story; action, reaction and interaction are shown</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Angles or viewpoints are interesting</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Backgrounds are not distracting or inappropriate</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Lighting is appropriate and interesting</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo shows detail and is close to subject</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Fronts and faces are shown</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Center of interest is slightly above or below horizontal midpoint, or to the side of vertical midpoint</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo uses one or more composition rules</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo is vertical or horizontal as appropriate</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Unimportant areas are cropped out</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Subjects and objects are not close to the edge or cut off</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Subjects and objects have enough room to move</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td></td>
<td>Self Evaluation Date: ______</td>
<td>Section/Copy Editor Review Date: ______</td>
<td>Due Date for Edits: ______</td>
<td>EIC Review Date: ______</td>
<td>Due Date for Edits: ______</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>------------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Photo is in focus</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo specs are correct</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo captures action and emotion</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Photo is saved in correct folder</td>
<td>5 4 3 2 1</td>
</tr>
<tr>
<td>Caption info is provided or caption is written</td>
<td>5 4 3 2 1</td>
</tr>
</tbody>
</table>

Evaluated by Photographer: ________________________________ Total score: ______
Evaluated by Section/Copy Editor: __________________________ Total score: ______
Evaluated by EIC: ________________________________ Total score: ______
Evaluated by Adviser: ________________________________ Total score: ______

Lesson 9
RATE YOUR PROGRESS

4.0 □ I can do all tasks in 3.0 and I can teach others!
3.0 □ I can demonstrate an ability to take quality photographs that reflect an understanding of the rules of composition. I can...
 a. identify a quality photograph as well as the composition rules that are used to create the quality photograph
 b. arrange elements in an image in a visually pleasing manner
 c. move and adjust for angles and background to capture a quality photograph
 d. employ concrete composition techniques to create an effective and visually pleasing picture
2.0 □ I understand some of the composition rules, but I don’t understand how to achieve them when taking a photograph.
1.0 □ I don’t understand what qualities compose a good photograph.
Lesson 10
The Assignment

Objectives – In this lesson you will learn:

- How to work on a team for story coverage
- How to work on an assignment so you return with usable photos
- That the photographer’s job includes tasks before and after photos are taken

“The photograph isolates and perpetuates a moment of time: an important and revealing moment, or an unimportant and meaningless one, depending upon the photographer’s understanding of his subject and mastery of his process.”
– Edward Weston, photographer, 1886-1958

For a photographer, an assignment is more than, “Go take pictures of the water polo team practice.” With such assignments, many beginning photojournalists will show up for a few minutes, take a few snapshots and go home.

Instead, an assignment should include a talk between the editor, the photographer, the reporter writing the story and perhaps the page designer. There should be a written version of the assignment, which includes:

- The names and contact information for any person the photographer needs to meet or photograph;
- Time and location if the photographer is documenting a specific event, with directions to any off-campus facility; and
- Any angles the photographer might cover such as a star player, the coach, the bench or any necessary behind-the-scenes coverage.

The more specific the assignment is, the more likely it is that you will return with images that will adequately cover the topic as the team planned.
Once you accept a photo assignment, a commitment exists to complete the assignment. Completion goes beyond just taking the pictures. An assignment also includes:

1. Taking a written assignment from an editor, writer, reporter or other staff member;
2. Verbally (or otherwise) agreeing to take a photo;
3. Finding good action shots to take without being directed to take them specifically;
4. Taking pictures while representing the student media by using school-owned equipment, obtaining a press credential using the name of the student media or otherwise identifying yourself as a member of the school’s student media outlets; and
5. Gathering complete caption information.

Regardless of how you, as a photographer, get an assignment, it is your responsibility to get quality photos – action photos full of emotion that are good in technical quality, that are well-composed (for example, are more than snapshots) and that have some meaning. Accepting an assignment is a contract between the publication and you.

It is also your responsibility to have the camera and all necessary equipment, such as digital storage cards, batteries, notepad and pen, to complete the assignment in a timely fashion. It is unacceptable for a photographer to not complete an assignment because the camera didn’t work. Plan ahead. Have a backup plan.
Like a reporter who has completed the interview, the work isn’t over. Editing an assignment is a team effort. Photojournalists, like writers, need editors and need to learn from their experiences. To that end, editing an assignment generally includes steps such as:

- Initially cutting the useless images (out of focus, overexposed, underexposed)
- Narrowing down the choices by reviewing them with a partner (another photographer, an editor or a designer)
- Editing
- Writing captions
- Copying photos to the server
- Backing up images
- Deleting images from the local computer

Following these steps, particularly reviewing each other’s work, will result in everyone improving the quality of their photography.
1. Photography is a team sport. Write down two other players on your team of photographers by name and title and describe how they work with the photographers. Are there ways the relationship between the members of the team can be improved? Discuss with other staff members.

2. For each of the following steps a photographer follows after shooting an assignment, write out some detail, two or three sentences, for each step and explain why each is important. Explain the role of the individual photographer for each step and for other members of the team.
 - Copy images off the camera’s storage medium.
 - Discard unusable images.
 - Review images to select those to be considered for publication.
 - Crop and color correct the images.
 - Caption the images.
 - Copy the images to an accessible server to make them accessible to editors and designers.
 - Delete the images from the local computer.
I can do all tasks in 3.0 and I can teach others!

I can demonstrate an ability to effectively prepare for and complete a photography assignment. I can...

a. discuss photography needs and requests with other students and editors
 prepare for the photography event by helping create a written assignment
 b. including specific details regarding time, location and other pertinent information
 c. research and gather information needed for the photography assignment
 (i.e., gathering information necessary for writing a caption)
 d. edit my work after the photography event

I can demonstrate an ability to propel conversations forward and work as a team to make sure the photography assignment is completed effectively.

2.0 □ I understand that a photography assignment is more than just taking some pictures at an event, but I still struggle to understand some of the preparations, expectations and requirements of a photography assignment.

1.0 □ I don’t understand what a photography assignment entails or how to complete it effectively.
As the director of student media at Midwestern State University in Wichita Falls, Texas, Bradley Wilson, Ph.D., advises a weekly newspaper and broadcast operation. As an assistant professor, he teaches news reporting and the advanced reporting practicum class. Bradley is the editor of the publications for the national Journalism Education Association (JEA) and is active in local and regional associations to improve the quality of journalism education. He is a frequent speaker at workshops worldwide on topics ranging from the ethics of digital photography to publications design.

Bradley has received the Gold Key from the Columbia Scholastic Press Association, the Pioneer Award from the National Scholastic Press Association, the Medal of Merit and Carl Towley Award from JEA, the Star of Texas from the Association of Texas Photography Instructors and the Trailblazer Award from the Texas Association of Journalism Educators. In 2014, the National Press Photographers named him the Robin F. Garland Educator of the Year.